

Rys. 3.7. Plan działki z siatką niwelacyjną i rzędnymi roboczymi Źródto: opracowanie wlasne

Rys. 3.8. Charakterystyki wymiarowe kwadratów siatki niwelacyjnej znajdujących się w strefie wykopów i nasypów
Źródto: [85]

Jeżeli kwadrat znajduje się częściowo w wykopie i częściowo w nasypie konfiguracyjnie mogą zaistnieć dwa przypadki:

- przy układzie jak na rysunku 3.8a objętości nasypu i wykopu oblicza się ze wzorów:

$$
\begin{equation*}
V_{n}=\frac{1}{2} \cdot h_{\mathrm{sr}}^{n} \cdot b_{n} \cdot a \quad V_{w}=\frac{1}{2} \cdot h_{\mathrm{sr}}^{w} \cdot b_{w} \cdot a \tag{3.14}
\end{equation*}
$$

- przy układzie jak na rysunku 3.8b objętości nasypu i wykopu (lub odwrotnie: wykopu lub nasypu) oblicza się ze wzorów:

$$
\begin{equation*}
V_{n}=\frac{1}{6} \cdot h_{\mathrm{sr}}^{n} \cdot c \cdot d \quad V_{w}=h_{\mathrm{sr}} \cdot a^{2}-\frac{1}{6} \cdot h_{\mathrm{sr}}^{w} \cdot c \tag{3.15}
\end{equation*}
$$

gdzie:
$h_{\mathrm{st}}^{n} h_{\mathrm{sr}}^{w}$ - wartości średnie rzędnych roboczych nasypów i wykopów,
h^{n} - rzędna robocza nasypu w sytuacji jak na rysunku 3.8b.
Do obliczania objętości mas ziemnych korzysta się też z innych metod, na przykład metody przekrojów, metody warstwic, zależnie od warunków terenu (charakterystyki terenu) i zakresu robót. Prowadzą one bowiem do ściślejszych lub przybliżonych wyników. Planujący powinien w każdym przypadku realizować zasadę ,,czym większy zakres robót ziemnych, tym obliczenia ilości robót ziemnych powinny być bardziej ścisłe".

3.2.3. Rozdział i bilans mas ziemnych

W projekcie konieczne jest określenie kierunków i objętości przemieszczanych na nich mas ziemnych. Brakującą ziemię pozyskuje się z ukopów, a nadwyżkę składa się na odkład. Objętość gruntu pozyskana z wykopów i ukopu powinna być równa objętości gruntu wbudowanego w nasypy i odkład. W projekcie dane te są zawarte w tabeli rozdziału i w bilansie mas ziemnych. W tabeli tej należy określić:

- wykopy - lokalizacyjnie wyróżnione miejsca pozyskania gruntu,
- nasypy - lokalizacyjnie wyróżnione miejsca składowania gruntu,
- rozdzial mas ziemnych - objętość gruntu przemieszczana między wyróżnionymi wykopami i nasypami,
- średnią odległość przemieszczania gruntu na wyróżnionych kierunkach.

Jako odległość obliczeniową transportu mas ziemnych należy przyjmować odległość między środkami ciężkości wykopu lub ukopu (miejsca pozyskiwania gruntu) a nasypu lub odkładu (miejsca składowania nadmiaru gruntu), z uwzględnieniem rzeczywistego wydłużenia odległości transportu wskutek istniejących stałych przeszkód terenowych lub rozwinięcia trasy drogi w celu zachowania właściwych wzniesień i spadków.

Rozdział mas ziemnych można ustalić, rozwiązując zagadnienie transportowe programowania liniowego [84], optymalizując moment transportowy (objętość gruntu pomnożona przez odległość transportu) przerzutu mas ziemnych lub koszty tej operacji. Problem rozdziału mas ziemnych w tym przypadku rozwiązujemy wg następującej metodyki:

1. Ustalamy masy gruntu do przemieszczenia wraz z wyznaczeniem środków ich ciężkości, przy czym wykopy wyróżniamy jako miejsca pozyskania gruntu i nasypy jako miejsca składowania gruntu. Masy gruntu, których przeznaczenie i kierunek przemieszczania jest z góry ustalony, wyłączamy z analizy (dotyczy to np. mas gruntu w bezpośrednim sąsiedztwie wykopów i nasypów, przemieszczanych spycharkami).
